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This paper reports on an experimental study of the motion of freely rising axisym-
metric rigid bodies in a low-viscosity fluid. We consider flat cylinders with height h

smaller than the diameter d and density ρb close to the density ρf of the fluid. We
have investigated the role of the Reynolds number based on the mean rise velocity
um in the range 80 � Re = umd/ν � 330 and that of the aspect ratio in the range
1.5 � χ = d/h � 20. Beyond a critical Reynolds number, Rec, which depends on the
aspect ratio, both the body velocity and the orientation start to oscillate periodically.
The body motion is observed to be essentially two-dimensional. Its description is
particularly simple in the coordinate system rotating with the body and having
its origin fixed in the laboratory; the axial velocity is then found to be constant
whereas the rotation and the lateral velocity are described well by two harmonic
functions of time having the same angular frequency, ω. In parallel, direct numerical
simulations of the flow around fixed bodies were carried out. They allowed us to
determine (i) the threshold, Recf 1(χ), of the primary regular bifurcation that causes
the breaking of the axial symmetry of the wake as well as (ii) the threshold, Recf 2(χ),
and frequency, ωf , of the secondary Hopf bifurcation leading to wake oscillations.
As χ increases, i.e. the body becomes thinner, the critical Reynolds numbers, Recf 1

and Recf 2, decrease. However, introducing a Reynolds number Re∗ based on the
velocity in the recirculating wake makes it possible to obtain thresholds Re∗

cf 1 and

Re∗
cf 2 that are independent of χ . Comparison with fixed bodies allowed us to clarify

the role of the body shape. The oscillations of thick moving bodies (χ < 6) are
essentially triggered by the wake instability observed for a fixed body: Rec(χ) is equal
to Recf 1(χ) and ω is close to ωf . In the range 6 � χ � 10 the flow corrections induced
by the translation and rotation of freely moving bodies are found to be able to delay
the onset of wake oscillations, causing Rec to increase strongly with χ . An analysis
of the evolution of the parameters characterizing the motion in the rotating frame
reveals that the constant axial velocity scales with the gravitational velocity based on
the body thickness,

√
((ρf − ρb)/ρf ) gh, while the relevant length and velocity scales

for the oscillations are the body diameter d and the gravitational velocity based on
d ,

√
((ρf − ρb)/ρf ) gd , respectively. Using this scaling, the dimensionless amplitudes

and frequency of the body’s oscillations are found to depend only on the modified
Reynolds number, Re∗; they no longer depend on the body shape.

1. Introduction
In numerous situations, bodies (bubbles, drops or particles) of size d evolve freely

in a Newtonian fluid of viscosity µ. When the body density ρb is different from that
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of the fluid, ρf , the body moves relative to the fluid, say with velocity U . If the density
ratio ρb/ρf is not large, the motion involves a coupling between the hydrodynamics
(i.e. the disturbance flow induced by the body) and the body’s degrees of freedom
(i.e. its velocity and rotation rate). When the Reynolds number Re= ρf Ud/µ is
large enough for a significant wake to develop behind the body, complex behaviours
may be observed. Here, we consider the simple case of a body rising in a fluid
otherwise at rest under the action of buoyancy. The relevant velocity scale is then the
gravitational velocity, and the Reynolds number becomes the Archimedes number,
Ar= ρf req((�ρ/ρf ) g req)

1/2/µ, where the equivalent radius req is that of a sphere of
the same volume and �ρ = |ρf − ρb|.

Investigations concerning either the particular case of a sphere or that of bodies
of negligible thickness have been reported in the literature. Jenny, Dusek & Bouchet
(2003, 2004) investigated the case of a sphere and described the various regimes that
occur when Ar and ρb/ρf are varied. The instability of the rectilinear motion is
caused by the instability of the sphere wake and the regime transitions depend on the
density ratio, which influences the action of the wake on the body translation. Several
studies have also been devoted to bodies of negligible thickness, either circular
disks (Willmarth, Hawk & Harvey 1964; Stewart & List 1983; Field et al. 1997)
or two-dimensional cards (Mahadevan 1996; Belmonte, Eisenberg & Moses 1998;
Mahadevan, Ryu & Samuel 1999; Pesavento & Wang 2004; Andersen, Pesavento &
Wang 2005a, b; Jones & Shelley 2005). Depending on the Archimedes number and
the density ratio, fluttering, tumbling or chaotic motions are observed. In any case, the
drift angle between the instantaneous body velocity and orientation reaches significant
values, up to 180◦ in the tumbling regime. The existence of this drift angle has two
main consequences. It strongly couples the wake structure to the body rotation. It
also couples the body translation and rotation because of the tensorial nature of
the dependence of the added-inertia forces and moments (Lamb 1932) on the body’s
linear and angular velocities. The large shape anisotropy therefore drastically changes
the body’s dynamics.

For axisymmetric geometries, the body shape can be characterized by the ratio,
χ = d/h, of the maximum diameter d and the dimension h measured in the direction
parallel to the revolution axis. To our knowledge, oblate solid bodies of intermediate
shape (1 < χ < ∞) have not been considered yet. In contrast, many studies have been
devoted to ellipsoidal rising bubbles, with aspect ratios ranging from 1 to 3. For
diameters within 1.5–5 mm, regular oscillatory motions along either a plane zigzag
or a helical path are commonly observed (Saffman 1956; Aybers & Tapucu 1969).
Analysis of the bubble dynamics is more complicated than that for solid bodies. First,
the bubble shape is coupled to its motion through the balance between flow-induced
stresses and surface tension. Second, interfacial properties (and hence flow boundary
conditions) can be strongly influenced by the presence of minute concentrations of
surfactant. For bubbles in clean water, it has nevertheless been established both
from experiment (Ellingsen & Risso 2001) and numerical simulations (Mougin &
Magnaudet 2002) that shape fluctuations play no significant role in the regime of
path oscillations that follows the rectilinear rise. After the initial acceleration stage,
the bubble indeed maintains a constant ellipsoidal shape (with χ about 2) all along
its oscillatory path. At variance with the solid-disk case, the drift angle between the
bubble velocity and orientation remains very small at each instant.

The present work is a detailed experimental investigation of the behaviour of flat
rising cylinders. The problem involves three dimensionless parameters. The density
ratio is always close to unity whereas the Archimedes number is varied within the
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range 70–120, which includes the transition between the steady rectilinear rise regime
and the periodic regime. The aspect ratio is varied from 2 to 20 with the goal of
analysing the role of the shape anisotropy. In the range of parameters we consider, the
dynamics are controlled by the interplay between inertia and vorticity. The relative
inertia, which determines the ability of the body to react to hydrodynamic efforts,
depends on the shape through the proper and added-inertia tensors for the body. The
vorticity production, which is responsible for the generation of the boundary layer
at the body surface and the wake behind it, also depends on the body shape. To
disentangle the roles of the aspect ratio in these two phenomena, we shall compare
experimental results obtained with a moving body with numerical results for the flow
about the same fixed body.

The paper is organized as follows. Section 2 describes the experimental setup
and procedure. Section 3 presents the technique used to obtain a three-dimensional
description of the body’s motion, including translation and rotation. Section 4 provides
a complete characterization of the saturated oscillatory motions (in terms of frequency,
amplitudes and phases) in the considered range of Archimedes numbers and aspect
ratios. Then, § 5 discusses the onset of the path oscillations of moving bodies from a
comparison with wake destabilization for fixed bodies. Finally, § 6 presents an attempt
to collapse the results obtained for all aspect ratios by using a modified Reynolds
number based on a velocity scale characteristic of the reverse flow in the near
wake.

2. Experimental setup and procedure
The experimental procedure consists in tracking freely rising cylindrical bodies

released from the bottom of a tank filled with salt water. Their three-dimensional
displacement and orientation are accurately measured by means of two perpendicular
travelling cameras (figure 1).

The bodies are flat cylinders manufactured from nylon rods. This material was
chosen because it is easily workable and has a density, ρb ≈ 1.02 g cm−3, close to that
of water. Diameters d (resp. heights h) range from 5 to 20 mm (resp. 1 to 5 mm)
and are measured with an accuracy of ±0.01 mm. The aspect ratio χ = d/h, which
varies from 1.5 to 20, is known with an accuracy better than ±1 %. The body density
was determined from floating tests performed in a 4 litre tank filled with salt water;
the density of the solution was increased step by step by adding small quantities
of salt. This method allowed us to determine the body density with an accuracy of
±1 × 10−4 g cm−3. The density of the cylinders was found to range between 1.017 and
1.020 g cm−3.

The test section is a glass tank 1.70 m high with a square cross-section of 0.4 m
width. The tank is located in a air-conditioned laboratory where the temperature is
maintained at 21 ± 1◦C. It is filled with water to which salt is added in order to adjust
the density. The kinematic viscosity of the solution, close to 1.03 × 10−6 m2 s−1, was
determined from chemical tables (Wolf, Brown & Prentiss 1981). Great care was taken
to check the homogeneity of the solution within the tank. The temperature of the
solution was monitored by means of two thermocouples located at the bottom and
the top of the tank; the maximum temperature difference was always less than 0.5◦C.
Furthermore, the density of the solution was measured by means of a densimeter
(KEM DA-310M, Mettler Toledo/Kyoto Electonics): 10 ml samples were frequently
taken from both the top and bottom of the tank and their density was determined
with an accuracy of ± 1 × 10−4 g cm−3. No stratification took place in the tank,
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Figure 1. Schematic of the experimental setup. (a) Side view; (b) top view; (c) cylinders.

since the density difference between the top and the bottom was always less than
3 × 10−4 g cm−3.

Taking into account the errors in both the body and fluid densities, the density
difference ρf − ρb is known to an accuracy of ±3 × 10−4 g cm−3. This allows us to
investigate small density differences close to (ρf − ρb)/ρf � 10−2, i.e. density ratios
ρb/ρf which differ from unity by only 1 %. Finally, the Archimedes number,

Ar =
d

ν

√
3

16

ρf − ρb

ρf

gh,

is known to an accuracy of ±5 % and ranges from 70 to 120.
For each experimental run, the rise of a single cylinder corresponding to given Ar

and χ values was investigated. The cylinder was released from the bottom of the
tank using an original shutter consisting of two horizontal plates sliding in opposite
directions. We checked that the initial conditions (the cylinder’s inclination and the
velocity disturbances) have no influence on the final periodic motion. Nevertheless,
the cylinders were released gently and face up (with an inclination less than 10◦).
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Figure 2. (a) Raw image of the body given by a camera; (b) the image after subtraction of
the background image and binarization; (c) the detected contour superimposed on the raw
image; (d ) the ideal cylinder located and oriented as calculated from the contour.

The rise of the cylinders was then followed by two perpendicular travelling cameras
and lights, the elevation of which was recorded by means of a high-accuracy (±5 µm)
magnetic encoder. The magnetic encoder and cameras were synchronized and the
acquisition of images was carried out at 10 Hz, which ensured that at least 25 images
were recorded during each period of the body’s oscillation.

3. Determination of the body’s position and orientation
In this section we describe the image- and signal-processing techniques used to

determine the time evolution of the coordinates of the body centre and the angles
defining the orientation of its axis.

The two perpendicular cameras provide pairs of digital images. Since we used back
lighting, each image (756 × 566 pixels in 256 grey levels) shows the projection of the
body shadow in the visualization plane (figure 2a). Before each test, reference images
were recorded, namely the background image in the absence of any body and a set
of calibration images of a metal cylinder at various locations in the field of view. The
first step of the image processing consists in subtracting the background image from
the current image. Then a threshold is applied in the grey scale to obtain a binarized
image in which the body shadow is black and the background is white (figure 2b).
Finally the body contour, defined as a set of 600 adjacent pixels, is obtained as the
border between the black and white regions (figure 2c). This method ensures an
accuracy in the detection of each contour point of ±1 pixel. Then, the coordinates
of the contour points are converted from pixels to millimetres using the calibration
images. The linear variation in the optical scale factor with the distance from the
focal planes is taken into account by an iterative procedure that uses the information
supplied by the two cameras.

The coordinates of the body centre in the vertically moving camera frame (xcam,
y, z) are calculated as the isobarycentre of the contour points, with an accuracy of
±1/2 pixel= ±0.08 mm, better than that of each individual contour point because of
the large number of points involved in their calculation. Figure 3(a) presents typical
temporal evolutions of the horizontal coordinates y and z, showing an oscillatory
behaviour. The vertical coordinate in the laboratory frame, x, is calculated by adding
to xcam the vertical coordinate of the cameras given by the magnetic encoder. Since
the accuracy of the magnetic encoder (±5 µm) is far better than that of the contour
detection, the accuracy in the vertical coordinate x is the same as that of the
horizontal coordinates. Figure 3(b) shows the temporal evolution of x − umt , where
um is the final mean rise velocity. We observe that after the initial accelerating stage,
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Figure 3. Measured coordinates of the body centre (χ = 7, Ar = 90): (a) horizontal dis-
placements; (b) vertical displacement; (c) projection of the trajectory onto the (x, y)-plane and
the (x, z)-plane.

small oscillations are also measured along the vertical direction. The complete three-
dimensional trajectory of the body in the laboratory frame is shown in figure 3(c).

The image processing also provides the orientation of the revolution axis of the
body, which is defined by the unit vector n (figure 2d), whose coordinates are
nx, ny, nz. From each detected contour, we determined the 2 × 2 geometrical inertia
tensor corresponding to the body’s projection onto the corresponding vertical plane
(the (x, y)-plane for camera 1, the (x, z)-plane for camera 2). Then we calculated its
eigenvalues and eigenvectors. The direction of the projection of the body axis is given
by the eigenvector associated with the largest eigenvalue. From each pair of images
we thus obtained the angle θy (resp. θz) between the projection of the body axis onto
the (x, y)-plane (resp. (x, z)-plane) and the vertical direction:

cos θy =
nx

‖n − nzez‖
, (3.1)

cos θz =
nx

‖n − nyey‖ , (3.2)

where ex , ey and ez are the unit vectors of the laboratory frame. Knowledge of θy

and θz, which are determined to an accuracy of ±0.75◦, is sufficient to determine the
orientation n of the body axis.

The present image-processing technique provides an accurate measurement of five
of the six degrees of freedom of the body, namely x, y, z, θy and θz. It is unlikely that
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Figure 4. Removal of the weak horizontal drift and slow rotation (same run as in figure 3).
(a) Horizontal displacements after the filtering of the low-frequency drift; (b) top view of the
body path before (thick line) and after (thin line) the removal of the low-frequency rotation.

rotation about the symmetry axis, which we did not determine, played a significant
role since it was always too small to be noticed by visual inspection. Moreover, as we
shall see later, the body dynamics are essentially two-dimensional.

Figure 3 shows that the body motion involves different contributions: the vertical
mean rise velocity, oscillations at a constant frequency and a weak horizontal drift.
This drift is small since the average horizontal displacements were always observed to
be less than 2 % of the vertical displacement; moreover, it was neither reproducible
nor related to the governing parameters Ar and χ . Consequently, we decided to
eliminate it by filtering out the low frequencies in the signals x(t), y(t) and z(t).
Figure 4(a) shows the filtered time evolution of the horizontal coordinates for the
same case as in figure 3; y(t) and z(t) now oscillate about zero. However, their
amplitudes are not converging towards constant values as expected whenever the
path instability is saturating. Inspecting the trajectory from the top (figure 4b) reveals
that this apparent evolution of the amplitudes is actually due to a slow rotation
of the trajectory about a vertical axis. As for the horizontal drift, this rotation was
not reproducible and was always weak (more than 50 times slower than the main
oscillations); it was successfully eliminated by the following method. The measured
horizontal coordinates can be described as harmonic functions with amplitudes that
vary slowly in time:

y(t) = Ay(t) sin(ωt + βy), (3.3)

z(t) = Az(t) sin(ωt +βz). (3.4)

The amplitudes Ay(t) and Az(t), the phases βy and βz and the angular frequency ω are
determined using the Hilbert transform. The principal directions of the oscillations
can be calculated at each instant from the values of Ay(t), Az(t), βy and βz (see
Ellingsen & Risso 2001 for more details). Then a rotation about the vertical axis is
applied in order to align the y-axis with the principal direction of oscillation. Figure 5
shows that in this new frame the horizontal oscillations reach constant amplitudes
after the initial transient. We also note that, from a top view, the trajectory is now an
ellipse, the major axis of which is aligned with the y-axis (figure 4b).
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Figure 5. Body self-sustained oscillations in the principal frame (same run as in figure 3):
evolution of the body-centre coordinates (dashed line, measurements; solid line starting at
t = 40 s, the fit using (3.5)–(3.7)).

Of course, the low-frequency perturbations also affect the evolution of the body
orientation. In the laboratory frame, the oscillations of θy and θz are always about
zero, so no high-pass filtering is needed. However, their amplitudes do not reach
constant values and the suppression of the low-frequency rotation is necessary. We
applied the above procedure to the signals θy(t) and θz(t) and found the same principal
frame of oscillations. Figure 6 shows that, in this frame, the amplitudes of θy and θz

also reach constant values.
The low-frequency trajectory shift and rotation were also observed for rising bubbles

by Ellingsen & Risso (2001). They are probably mainly due to weak residual large-
scale motions, which cannot be totally avoided in a large tank. However, it might
well be that part of these low-frequency contributions is intrinsically linked to the
dynamics of the system (we shall come back shortly to this in § 5). Nevertheless they
are so small that their level is at best comparable with that of the erratic displacements
induced by the experimental defaults. Therefore we are not in a position to explore this
possibility at the present stage. We have at least ensured, though, that the influence of
these low-frequency contributions on the long-term body dynamics is negligible, since
the results obtained after their removal are reproducible whereas these slow motions
are not. In the following, these slow motions have been systematically eliminated and
we shall call the laboratory frame the principal frame of oscillation.

After the initial transient, the measured body motions can be described by five
harmonic functions,

x(t) = x̃ sin (2ωt − φx) + umt, (3.5)
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Figure 6. Body self-sustained oscillations in the principal frame (same run as in figure 3):
inclination of the body axis (dashed line, measurements; solid line starting at t =40 s, the fit
using (3.8)–(3.9)).

y(t) = ỹ sin (ωt − φy), (3.6)

z(t) = z̃ sin (ωt − φz), (3.7)

θy(t) = θ̃y sin (ωt), (3.8)

θz(t) = θ̃z sin (ωt − ψz), (3.9)

which involve 11 parameters, the five amplitudes x̃, ỹ, z̃, θ̃y, θ̃z, the four relative phases
φx, φy, φz, ψz, the angular frequency ω and the mean rise velocity um. Their values are
obtained by fitting the above harmonic functions to the measured signals. Figures 5
and 6 show that (3.5)–(3.9) accurately describe the measurements after the oscillations
have reached a constant amplitude (t > 40 s in this example). From this description,
linear and angular velocities or accelerations can easily be obtained analytically with a
much higher accuracy than if they were determined using the numerical differentiation
of data points.

4. Kinematics of freely moving bodies
Since the density ratio is fixed to a value close to unity, the characteristics of

the body motions only depend on the Archimedes number and the aspect ratio. In
this section, we present and discuss the measured characteristics of the motion for
70 � Ar � 120 and 1.5 � χ � 10.

The mean rise velocity um is observed to range from 8 to 35 mm s−1 while the
corresponding Reynolds number, Re = umd/ν, ranges from 90 to 320. Figure 7 shows
that Re depends very weakly on χ and increases almost linearly with the Archimedes
number. Since the Reynolds number enables us to compare our experimental results
with those for a fixed body placed in a uniform stream of velocity um, it will be used
hereafter in place of the Archimedes number. Note that Re/Ar is proportional to the
ratio of the rise velocity um and the gravitational velocity ug =

√
(�ρ/ρf ) gh. When

the body rises steadily along a rectilinear path, the axial body-drag coefficient equals
2u2

g/u
2
m and is thus proportional to Ar2/Re2. For oscillating bodies, Ar2/Re2 yields the
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aspect ratios χ = 2, 3, 6, 8 and 10. The lines correspond to numerical simulations of the flow
around fixed bodies: dashed line, χ = 2; dotted line, χ =6; solid line, χ = 10 (note that for a
fixed sphere St is about 0.135 at Re= 300).

vertical mean drag coefficient, which remains close to 1.2 over the present parameter
range.

When oscillations are observed, both the body-axis inclination and the horizontal
velocity have a well-defined frequency, f = ω/2π, whereas the vertical velocity
oscillates at twice this frequency (figure 5). The measured values of f range between
0.2 and 0.4 Hz. Figure 8 shows the evolution of the Strouhal number, St = f d/um,
which is the ratio of the body diameter d and the path wavelength, λ= um/f . For a
given aspect ratio, the Strouhal number varies weakly with the Reynolds number. It
is almost constant for the thickest bodies, indicating that the wavelength λ increases
proportionally with the body size (d or h). The Strouhal number, however, increases
strongly with the aspect ratio.
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The horizontal body displacements are characterized by the amplitudes of the
major, ỹ, and minor, z̃, oscillations. Depending on the ratio η = z̃/ỹ, the trajectory
can range from a plane zigzag (η =0) to a circular helix (η = 1). The top view of the
body trajectory, given in figure 4(b), shows that the corresponding path is actually
an elliptical helix (0 <η < 1). We also calculated the ratio of the major and minor

amplitudes of the body-orientation oscillations and found that the values of θ̃z/θ̃y

are the same as those of η = z̃/ỹ. In figure 9, the values of η are plotted against the
Reynolds number. For each aspect ratio, η starts from a maximum value just above
the onset, Rec, of the path oscillations (which is indicated by a vertical line at the top of
the figure) and then decreases as Re increases. Note that the behaviour observed near
onset has to be taken with some caution, for two reasons: (i) the measured amplitudes
are small and close to the experimental uncertainty; (ii) since if the bifurcation is
supercritical the growth rate of the instability is likely to tend towards zero as Re
tends towards Rec, the tank may not be high enough to reach the final saturated
amplitude. The inset in figure 9 shows the evolution of η for Reynolds numbers
200 and 250: both the thickest (χ =2, 3) and thinnest bodies (χ = 9, 10) experience
quasi-planar zigzagging motions (η < 0.20), whereas for intermediate aspect ratios the
path becomes more helical (η ≈ 0.35). Nevertheless, above Re = 200, η never exceeds
0.35, indicating that the trajectories are, rather, of the zigzag type. In the following
we therefore consider a two-dimensional description of the body motion in a vertical
plane corresponding to the three dominant degrees of freedom, x, y and θy; (3.7) and

(3.9) are no longer considered, nor are the secondary parameters z̃, θ̃z, φz and ψz.

Figure 10 shows the amplitude of the body-axis inclination, θ̃y , versus the Reynolds
number. For all aspect ratios the behaviour is qualitatively similar. Below the critical
Reynolds number Rec the body rises steadily and θ̃y =0. Beyond Rec, oscillations
occur and the amplitude θ̃y increases with Re. The evolution of Rec with aspect ratio
is plotted in the inset. It was determined as the average of the value corresponding
to the last measured stable case and that of the first unstable one. We observe that
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Rec depends nonlinearly on the aspect ratio: it first decreases as χ is increased from
1.5 to 5, reaches a minimum and then increases as χ increases further. This complex
behaviour will be discussed in § 5. The amplitude of the inclination angle is of the
same order for all aspect ratios; the thinnest bodies start oscillating at a larger
Reynolds number but the increase of their amplitude with Re is then stronger.

Concerning horizontal displacements, the measured amplitudes of the body-centre
displacements ỹ range from 0.15 to 6 mm. The onset condition for the oscillations of
the body’s displacement is the same as that for the body’s orientation. Similarly to
the fact that there is a unique frequency of oscillation ω, there is a unique threshold
Rec(χ). Figure 11 displays ỹ/d as a function of Re−Rec. The curves corresponding to
the various aspect ratios have different magnitudes and slopes, which do not evolve
monotonically with χ . As will be confirmed later, this indicates that y is not the most
appropriate variable with which to analyse the bifurcation.

To complete the description of the horizontal oscillations, we need the phase
difference φy between y and θ . In a preliminary paper (Fernandes et al. 2005),
we presented and discussed the phase difference �φ = π/2 − φy , which provides a
description of the inclination of the body to the path. For thick bodies (χ ≈ 2) �φ

is close to zero. As the aspect ratio is increased, �φ continuously increases up to a
value slightly larger than π/2. While �φ depends strongly on the body’s aspect ratio,
it depends only weakly on the Reynolds number. We also showed that the evolution
of �φ with χ cannot be obtained from the irrotational-flow approximation, which
predicts �φ = π whatever the aspect ratio; therefore it is clear that the wake plays a
major role in these oscillatory motions.

It now remains to consider the characteristics of the oscillations in the vertical
direction (x̃ and φx). For the thickest bodies (χ � 3), the experimental results show
that x̃ remains negligible whatever the Reynolds number. Beyond χ =3, x̃ is an
increasing function of both Re and χ . In any case, x̃ remained moderate since the
maximum measured value was 0.07d (≈ 0.2ỹ), for χ = 10 and Re= 320. Hence it seems
that there is a strong connection between �φ and x̃, suggesting that the body motion
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Figure 11. Amplitude of the horizontal displacement of the body centre ỹ/d vs. Re − Rec

for χ = 2, 3, 6, 8 and 10.

may appear simpler in a reference frame rotating with the body. Thus we make use of
two different systems of axes, both of which have their origin fixed in the laboratory.
The first is the Galilean laboratory frame with fixed axes (x, y); with this choice
the components of the buoyancy do not vary in time. The second one makes use of
axes X, Y rotating with the body, X being the direction parallel to the body axis;
the boundary conditions at the body surface are then stationary, which in particular
implies that the components of the proper and added-inertia tensors remain constant.
Figure 12 shows the body-centre velocity in the two reference frames for a case where
significant vertical oscillations are observed (χ = 10, Re = 270). Figure 12(a) shows the
vertical, ux =dx/dt , and horizontal, uy = dy/dt , components in the laboratory frame.
Figure 12(b) shows the axial, uX , and lateral, uY , components of the velocity projected
onto the rotating frame. We see that there are no measurable velocity fluctuations
in the direction parallel to the body axis. This conclusion holds throughout the
investigated range of parameters. Hence in the rotating frame, the description of the
body motion reduces to

uX(t) = uX, (4.1)

uY (t) = ũY sin(ωt − φY ), (4.2)

θy(t) = θ̃y sin(ωt). (4.3)

From a mathematical point of view, one may note that if uY (t) and θy(t) are harmonic
functions, uy(t) and ux(t) cannot be so because the rotation of one reference frame
with respect to the other involves nonlinear terms such as uy cos(θy). Indeed, a careful
examination of the power spectrum of uy (resp. ux) shows a tiny secondary peak at
3ω (resp. 4ω); each peak has an amplitude which is 0.3 % of the primary peak. No
comparable secondary peak was observed in the spectrum of uY , confirming that
the rotating frame is better suited for the description of the body motion. Note,
however, that the secondary harmonics contain so little energy that we obtained the
same values for the motion parameters by fitting exact harmonic functions to the
experimental results either in the laboratory frame or in the rotating frame. The
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Figure 12. Temporal evolution of the body-centre velocity in two different reference frames.
(a) Laboratory frame: thin line, ux/um; thick line, uy/um. (b) Rotating frame: thin line, uX/um;
thick line, uY /um.

evolution of the parameters that characterize the motion in the rotating reference
frame will be presented and discussed in § 6.

5. Comparison between the wakes of moving and fixed bodies
A fixed body immersed in a uniform stream of constant velocity um represents

the reference situation in which the six degrees of freedom of the body are blocked.
It is of interest to compare the onset and frequency of the oscillations of moving
bodies with those of the wake past fixed bodies. The linear stability of a fixed-sphere
wake (χ =1) and a fixed-disk wake (χ = ∞) was first studied by Natarajan & Acrivos
(1993). In the case of a sphere, their results were confirmed and extended using
direct numerical simulations (Johnson & Patel 1999; Ghidersa & Dusek 2000) and
experiments (Provansal & Ormières 1998; Schouveiler & Provansal 2002). The scenario
is the same for the two types of body. At low enough Reynolds number, the flow
is steady and axisymmetric. Beyond a first critical Reynolds number Recf 1 the axial
symmetry is broken by a regular bifurcation (i.e. a bifurcation for which the growth
rate eσt of the disturbance is purely real); the flow remains steady and symmetric
relative to a plane that contains the body axis. Beyond a second critical Reynolds
number Recf 2 >Recf 1 the flow becomes unsteady owing to a Hopf bifurcation, and
oscillating velocities are observed in the wake.

To our knowledge, no results are available for the body shapes considered here. To
allow relevant quantitative comparisons with our experiments, we performed direct
numerical simulations of the flow past flat cylinders with aspect ratios 2, 3, 4, 6 and
10. We used the finite-volume code JADIM developed by our team (see Legendre &
Magnaudet 1998 for details and validation). For all aspect ratios, the size of the
computational domain was 55d in the axial direction and 32d in the radial direction.
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Figure 13. Critical Reynolds numbers characterizing the onset of instabilities: Recf 1, regular
bifurcation of the flow past fixed bodies (DNS); Recf 2, Hopf bifurcation of the flow past fixed
bodies (DNS); Rec , onset of the path oscillations of freely rising bodies (experiment).

The three-dimensional grid was obtained by rotating a two-dimensional Cartesian
grid about the body axis. The grid was made of 100 × 66 × 32 elementary volumes, in
the axial, radial and azimuthal directions, respectively. The grid is refined close to the
body, with a first layer of cells 0.005d thick, which allows a satisfactory description
of the boundary layer for the range of Reynolds numbers investigated (100–250).
The computations are initialized with a uniform velocity, equal to the constant axial
incoming velocity um, imposed at the top of the domain. The stability of the flow
was investigated by applying a sinusoidal lateral force (y-component) in a grid cell
located in the near wake. This disturbance was imposed for 1000 time steps after the
initial transient stage and its amplitude was less than 1 % of the final drag force.
The open symbols in figure 13 show how the two critical Reynolds numbers, Recf 1

and Recf 2, obtained through direct numerical simulations (DNS) evolve with the
aspect ratio. Both are monotonic decreasing functions of χ behaving as 1 + χ−1 and
tending towards the results of Natarajan & Acrivos (1993) for a disk, Recf 1 = 116.5
and Recf 2 = 125.6, as χ tends towards infinity. The decrease in the critical Reynolds
number as the body becomes thinner can be understood from an inspection of the
stable attached vortex in the regime where the steady wake is stable (see figure 14).
This vortex can be characterized by its maximum velocity Vw , located on the axis,
and its length Lw . In order to investigate the role of the vortex intensity on the
instability, we determined the value of Vw and Lw just below the onset, Recf 1, of
the regular bifurcation. For a given Reynolds number, both Vw/um and Lw/d are
increasing functions of χ: the thinner the body, the more intense the attached eddy.
We found that Lw/d is close to 2 and that Vw/um obeys Vw/um ≈ 0.62(1 + χ−1)−1.
This suggests the definition of a new Reynolds number, Re∗ = Vwd/ν, related to the
usual body Reynolds number through the empirical expression

Re∗ =
0.62

1 +χ−1
Re. (5.1)
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Figure 14. Schematic of the near wake in the body frame: Vw is the maximum recirculating
velocity and Lw is the length of the closed eddy.

The great advantage of using Re∗ is that the threshold of the first two bifurcations
becomes independent of χ when expressed in terms of Re∗. More precisely, we now
have Re∗

cf 1 = 72 and Re∗
cf 2 = 78. While quite empirical at this stage, the above choice

for the definition of Vw and Lw is based on the general idea that the onset of instability
is governed by the amount of vorticity generated at the body surface (Magnaudet &
Mougin 2007), which is directly reflected in the characteristics of the attached eddy.

Figure 13 also shows the experimental critical Reynolds number Rec that
corresponds to the onset of the oscillatory motions of a freely rising body. Note
that it might be that this threshold corresponds to a secondary bifurcation rather
than to the primary one. This could be the case if the small horizontal drift that
we removed from our original signals contained the signature of a primary regular
bifurcation. For thick bodies (χ � 6) Rec is very close to Recf 1. The corresponding
body oscillations are thus controlled by the wake dynamics and start as soon as the
flow axisymmetry is broken. For thin bodies (χ > 6) the path instability is delayed:
Rec increases rapidly when χ rises from 6 to 10 and then seems to decrease slightly
for χ > 10, while Re∗

c reaches a constant value of about 116.
This behaviour of thin bodies is quite surprising since in a certain range of Re it

appears that flat cylinders rise steadily whereas the wake of a fixed body of identical
shape is already unsteady (Rec >Recf 2). This is in qualitative agreement with the
early observations of Willmarth, Hawk & Harvey (1964), who noticed that falling
flat disks were able to settle vertically at Reynolds numbers well beyond the threshold
of the wake instability of a fixed disk. One can then wonder whether the wake of
the moving body is stable in this regime. Another possibility could be that the flow
is already unstable but causes only tiny oscillations of the body which are below the
measurement accuracy.
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Figure 15. Velocity field in the laboratory frame for the steady case with χ = 10 and
Re =100 < Recf 1 < Rec . (a) Streamlines and velocity magnitudes around a freely rising body
(from PIV); (b) streamlines and velocity magnitudes around a fixed body (from DNS); (c) dye
visualization of the wake of the freely rising body.

To settle the question we used two different experimental techniques to investigate
the body’s wake. The first technique consists in covering the body surface with
potassium permanganate, which colours the fluid while it dissolves during the
body’s rise. Figure 15(c) shows a corresponding visualization of the attached region
behind the body and the streamlines within it. The second technique is the classical
particle-image-velocimetry (PIV) technique. Small (≈ 60 µm) almost neutrally buoyant
(ρ =1.023 g cm−3) reflecting particles of Orgasol (2001 EXD NAT 1, ELF Atochem)
were added to the fluid. A Yag laser (Twin ultra Cantel 2 × 30 mJ) generated a
vertical sheet of light with a thickness of about 1 mm. A camera (PCO SensiCam)
acquired pairs of digital images (1280 × 1024 pixels), the interval between the two
images of each pair being 10 or 20 ms depending on the rise velocity of the body. The
liquid velocity in the measurement plane was computed on a 80 × 64 grid from the
intercorrelations of (32 × 32)-pixel elements by means of the PIVIS code developed in
our laboratory (Cid & Gardelle 2005). Finally we obtained sequences of the velocity
field in a window 60 mm wide and 48 mm high located in the region where the
body motion is fully developed (see figure 15a). The space and time resolutions were
respectively 0.05 mm and 0.25 s. Note that, since the measurement window was fixed,
the sequence duration was determined by the time taken by the body to cross it, i.e.
3–6 s.

For a thin freely rising body of aspect ratio χ = 10, figure 15 compares the flow
field obtained by the two aforementioned experimental techniques to the fixed-body
DNS prediction for Re =100. Since Re <Recf 1 < Rec, both flows are steady and
must therefore be identical. Actually, the measurements are in good agreement with
the DNS result; in particular the extension of the attached region is remarkably
similar. After this validation, we turned to the more interesting situation where the
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Figure 16. DNS of the flow about a fixed body for χ = 10 and Recf 1 <Re =180 < Rec . The
streamlines and velocity magnitudes are presented in the body frame, for the symmetry plane.
The four subfigures correspond to t = 0, t = T/6, t = T/3 and t = T/2, where T is the period
of the oscillations.
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Figure 17. PIV measurement of the flow about a rising body for χ = 10 and Recf 1 < Re =
180 <Rec . The streamlines and velocity magnitudes are presented in the body frame, for the
symmetry plane. The three subfigures correspond to t = 0, t = 0.65 d/um and t = 1.3 d/um.

motion of the freely rising body is steady although the wake of the fixed body is
unsteady: Recf 2 <Re < Rec. Figure 16 shows the DNS around the fixed body for
Re= 180 (the velocity field is presented in the symmetry plane xOy). Figure 17 shows
the corresponding PIV measurements for the same Reynolds number (note that
many tests were required to finally obtain a realization in which the symmetry plane
coincided with the laser sheet). The differences between the moving and fixed bodies
are obvious: the wake of the former is steady even though it is slightly asymmetric
owing to a small declination of the body axis (≈ 2◦), whereas that of the latter is
clearly oscillatory (we also carried out a DNS at an inclination of 2◦ and did not find
significant differences from the zero incidence case). The above comparison led us
to conclude that, in the regime under consideration, the flow corrections induced by
the extra degrees of freedom of freely moving bodies are able to suppress the wake
oscillations.
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For moving bodies, path and wake oscillations are always observed simultaneously
and have the same frequency, as seen in figure 8. The computed frequencies of the
wake oscillations of fixed bodies were also plotted in figure 8 for χ =2, 6 and 10:
the corresponding Strouhal number depends weakly on both the aspect ratio and the
Reynolds number. Moreover, the Strouhal number of thick moving bodies (χ =2, 3)
remains very close to that of the corresponding fixed bodies whereas that of thin
moving bodies (χ = 6, 8, 10) is significantly larger.

Comparisons with the Strouhal and critical Reynolds numbers of the wake behind a
fixed body finally led us to discern two different regimes. On the one hand, oscillations
of thick bodies (χ < 6) are triggered and controlled by the wake instability; the only
distinctive feature of the moving bodies is that the axisymmetry and steadiness are
broken simultaneously, the path oscillations starting at Rec = Recf 1. On the other
hand, the large geometrical anisotropy of thin moving bodies (χ � 6) turns out to
delay the onset of wake oscillations and is responsible for the increase in their
frequency when these oscillations eventually start.

6. Determination of the relevant scales
When the body is thinner, the amount of vorticity produced at its surface increases.

For a body moving with a constant velocity parallel to its axis, we showed that this
effect can be taken into account using the Reynolds number Re∗ which characterizes
the intensity of the closed vortex. For a freely rising body, changing the aspect ratio
also modifies the coupling between the body’s translational and rotational degrees
of freedom; in particular, the anisotropy of the proper and added-inertia tensors
strongly depends on χ . In this section we consider all the parameters characterizing
the body motion in the rotating frame as functions of Re∗ (defined by (5.1)) in order
to make clear the role of the degrees of freedom. Our strategy consists in looking for
the time, velocity and length scales that allow the results corresponding to the various
aspect ratios to collapse onto a master curve.

We know from figure 8 that umd−1 (or ugd
−1) is not the relevant scale for norma-

lizing the frequency f of the oscillations. Therefore let us define another Strouhal
number, namely

St∗ =
fd√

(�ρ/ρ)gd
= St(2/Cd)

1/2χ−1/2. (6.1)

Figure 18 shows that St∗ is almost independent of both the Reynolds number and the
aspect ratio: St∗ ≈ 0.10. Mahadevan et al. (1999), from experiments with falling cards,
and Jones & Shelley (2005), from numerical computations of the Euler equations
around a moving card, found that St is proportional to χ1/2, which is equivalent
to the present result. We have seen already that the oscillation frequency of thick
moving bodies is close to the shedding frequency of fixed bodies of identical shape
(see figure 8), which is almost independent of χ . Moreover, St∗ approximately equals
St for χ = 1.5. For all aspect ratios and Reynolds numbers, the value of St∗ for a
given moving body is therefore close to that of St for its fixed counterpart.

Figure 19 shows the evolution of the amplitude of the body-axis inclination. This

figure is similar to figure 10 but here θ̃y is plotted against Re∗ instead of Re. For thick
bodies (χ � 6), the amplitudes nicely collapse onto a single curve,

θ̃y =5.8 × 10−2(Re∗ − Re∗
cf 1)

1/2 = fθy
(Re∗), (6.2)
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Figure 19. Amplitude of the body-axis inclination θ̃y vs. Re∗ for χ = 2, 3, 6, 8 and 10.

which is probably the signature of a supercritical Hopf bifurcation. We already know
that the threshold of the path instability of thick bodies does not depend on the aspect
ratio (Re∗

c = Re∗
cf 1); for Re∗ >Re∗

c we now see that the increase in their amplitude is

also independent of χ . For thin bodies (χ � 6), the onset is delayed (Re∗
c >Re∗

cf 1), so
that the amplitudes cannot collapse with those of thick bodies over the whole range

of Re∗. However, beyond the onset, the values of θ̃y for χ =8 and 10 rapidly join
the other results on the curve defined by (6.2). For χ =10, we did not manage to

measure small amplitudes just beyond the onset and θ̃y seems to jump directly from
zero to a finite value located on curve (6.2), which could correspond to a subcritical
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Figure 20. Normalized amplitude of the lateral velocity, ũY /ωd , vs. Re∗

for χ = 2, 3, 6, 8 and 10.

bifurcation. This makes us wonder whether, for thin bodies, the bifurcation remains
supercritical or becomes subcritical. Accurate measurements close to the onset are
unfortunately difficult; the smaller the amplitude, the more difficult it is to disentangle
regular oscillations from perturbations due to the small residual large-scale motions,
and the longer the time needed to relax towards saturation. Therefore the present
experiments do not allow us to settle the above question. Direct numerical simulation
is probably a more appropriate tool to elucidate the nature of the bifurcation, as
used by Mougin & Magnaudet (2002) for a rising bubble. In the laboratory frame,
the amplitude of the horizontal displacement, ỹ, normalized by the body diameter d

strongly depends on the aspect ratio. Figure 20 shows the amplitude of the lateral
velocity, ũY , in the rotating frame, normalized by ωd . Note that since we consider
harmonic functions, scaling the velocity by ωd is strictly equivalent to scaling the

displacement by d . As for θ̃y , the values of ũY /ωd collapse onto a single curve,

ũY

ωd
= 4.5 × 10−2(Re∗ − Re∗

cf 1)
1/2 = fuY

(Re∗). (6.3)

This confirms that the rotating frame is better suited than the laboratory frame
for studying the body dynamics. From the scaling of the frequency (St∗ ≈ 0.1) and
(6.3), we obtain ũY ≈ 0.2π

√
(�ρ/ρf ) gd fuY

(Re∗). It is also worth noting that, when
correctly normalized, the two oscillating quantities θy and uY have the same onset,
frequency and amplitude over the whole range of parameters investigated. They are
thus two signatures of the same instability and it is equivalent to study the nature
of the bifurcation from either of them. However, their relative dynamics remain
complex. Figure 21 presents the evolutions of their phase difference φY as a function
of Re∗. Qualitatively, the behaviour of φY is similar to that of �φ, the phase difference
between the velocity and orientation in the laboratory frame: φY significantly increases
with χ whereas it only weakly increases with Re∗. However, the range of variation in
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φY is only half that in �φ (60◦ instead of 120◦), with values spreading around 180◦.
We did not find any relevant scaling for expressing the variation in φY with χ .

Figure 22 shows the constant axial velocity uX , normalized by the gravitational
velocity ug . The results found for all aspect ratios collapse onto a single curve,

uX

ug

=1.35 − 3.5 × 10−3(Re∗ − Re∗
cf 1), (6.4)

which exhibits a slight decrease with Re∗, from approximately uX = 1.4 for Re∗ = 60
down to 1 for Re∗ =175.
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The relevant scales are thus made clear in the body frame. On the one hand, the
constant axial velocity scales as ug =

√
(�ρ/ρf ) gh, like the mean rise velocity. On

the other hand, the length, velocity and time scales of the body oscillations are d ,√
(�ρ/ρf ) gd = ugχ

1/2 and the ratio of these two quantities, respectively. The body
motion is thus defined by five dimensionless parameters: θ̃y , ũY u−1

g χ−1/2, uXu−1
g , St∗,

which are functions of Re∗ only, and φY , which depends on both χ and Re∗.

7. Conclusion
We performed an experimental study of the kinematics of freely rising oblate

axisymmetric bodies. The density ratio was maintained close to unity to focus on
the roles of the Reynolds number and the aspect ratio. We explored the range of
parameters where either a rectilinear rise at a constant velocity or a regular oscil-
latory motion are expected. We first showed that the body motion is essentially two-
dimensional and thus we can reduce its description to the evolution of three degrees of
freedom, two in translation and one in rotation. We then observed that the behaviour
looks much simpler in a coordinate system rotating with the body in which the axial
velocity is constant. Since we observed that the body’s rotation and lateral velocity
are harmonic functions of time, the description of the body motion could be reduced
to only five parameters (see (4.1)–(4.3)). From comparisons with the threshold and
the shedding frequency of fixed-body wakes, we distinguished the behaviours of thick
(χ < 6) and thin bodies (χ � 6). On the one hand, the degrees of freedom of thick
moving bodies play a minor role in the dynamics. The effect of the aspect ratio is
restricted to its role in the vorticity production at the body surface and can be taken
into account by introducing a new Reynolds number, Re∗ (5.1), which may be thought
of as being based on the maximum vorticity in the near wake. On the other hand,
the flow corrections induced by the translational and rotational degrees of freedom
of thin moving bodies are able to delay the onset of oscillations. We investigated the
evolution of the motion parameters in the rotating frame as a function of Re∗ and
found that the relevant length and velocity scales of the oscillations are respectively
d and

√
(�ρ/ρf ) gd . When made dimensionless using these scales, the frequency and

amplitude of the oscillations are almost independent of χ .
The body kinematics have been investigated in detail in this work. We now have to

understand the underlying dynamics that govern the observed scalings. This implies
an investigation of the hydrodynamic forces acting on the body and their coupling to
the body’s degrees of freedom, which will be the subject of a forthcoming paper.
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